\(\int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\) [352]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 140 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f} \]

[Out]

-(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*(a+b*sin(f*x+e)^2)^(1/2)/(a+b)/f/(1+b*sin(
f*x+e)^2/a)^(1/2)+(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2
)/f/(a+b*sin(f*x+e)^2)^(1/2)+(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)/(a+b)/f

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.29, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3271, 425, 21, 434, 437, 435, 432, 430} \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{f (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}+\frac {\tan (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f (a+b)} \]

[In]

Int[Sec[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/((a +
 b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e +
 f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(f*Sqrt[a + b*Sin[e + f*x]^2]) + (Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x
])/((a + b)*f)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 434

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right )^{3/2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {b-b x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f} \\ & = \frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}+\frac {\left (b \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1-x^2}}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f} \\ & = \frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f} \\ & = \frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a+b \sin ^2(e+f x)}} \\ & = -\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.01 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\frac {-2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \tan (e+f x)}{2 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Sec[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(-2*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e
 + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Tan[e + f*x])/(2*(a + b)*f*Sq
rt[2*a + b - b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 2.36 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.99

method result size
default \(\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )+b \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, a E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) b +a \sin \left (f x +e \right )+b \sin \left (f x +e \right )\right )}{\left (a +b \right ) \sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(278\)

[In]

int(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF
(sin(f*x+e),(-1/a*b)^(1/2))+b*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/
a*b)^(1/2))-(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*a*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))-cos(
f*x+e)^2*sin(f*x+e)*b+a*sin(f*x+e)+b*sin(f*x+e))/(a+b)/(-(a+b*sin(f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/
2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 632, normalized size of antiderivative = 4.51 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {2 \, {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \cos \left (f x + e\right ) F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + 2 \, {\left (2 i \, a + i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \cos \left (f x + e\right ) F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) + {\left (2 i \, a + i \, b\right )} \sqrt {-b} \cos \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (-2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) + {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \cos \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b \sin \left (f x + e\right )}{2 \, {\left (a b + b^{2}\right )} f \cos \left (f x + e\right )} \]

[In]

integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*(-2*I*a - I*b)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*cos(f*x + e)*elliptic_f(arcsin(s
qrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b
 + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + 2*(2*I*a + I*b)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*c
os(f*x + e)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))),
(8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*cos
(f*x + e) + (2*I*a + I*b)*sqrt(-b)*cos(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcs
in(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2
*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (-2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*cos(f*x + e) + (-2*I*a - I*b)
*sqrt(-b)*cos(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 +
a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a
*b)/b^2))/b^2) - 2*sqrt(-b*cos(f*x + e)^2 + a + b)*b*sin(f*x + e))/((a*b + b^2)*f*cos(f*x + e))

Sympy [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {\sec ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \]

[In]

integrate(sec(f*x+e)**2/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(sec(e + f*x)**2/sqrt(a + b*sin(e + f*x)**2), x)

Maxima [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)

Giac [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {1}{{\cos \left (e+f\,x\right )}^2\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \]

[In]

int(1/(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2)),x)

[Out]

int(1/(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2)), x)